

 Navigation

 	
 index

 	
 next |

 	Speech Corpus Tools 0.1.0 documentation

Welcome to SpeechCorpusTools’s documentation!

Contents:

	Introduction
	General Background

	Speech Corpus Tools: Tutorial and examples
	Introduction to Tutorial

	Navigation Tour
	Queries (1)

	Discourse (2)

	Connection (3)

	Details/Acoustics/Help (4)

	Connection
	IP address (or localhost)

	Port

	Username and Password

	Connect

	Find local audio files

	Corpora

	Import local corpus

	Building Queries
	Linguistic Objects

	Filters

	Exporting Queries

	Viewing Discourses

	Viewing Results
	Utterance

	Word

	Phone

	Syllable

	Example: Connecting to Servers

	Enrichment

	Filters Explained

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Introduction

General Background

Speech Corpus Tools is an application for interacting with large scale
datasets. It uses PolyglotDB as the underlying data storage, which allows
for consistent queries across a wide range of possible input formats.

Speech Corpus Tools is written in Python, which allows for Python scripts
to be written using its API, so advanced users can create their own queries
using Python, rather than SQL or Cypher (the underlying database languages).

In addition, Speech Corpus Tools provides a graphical user interface for
easily displaying annotations and speech in the database and the results
of queries.

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Speech Corpus Tools: Tutorial and examples

Introduction to Tutorial

Speech Corpus Tools is a system for going from a raw speech corpus to a data file (CSV) ready for further analysis (e.g. in R), which conceptually consists of a pipeline of four steps:

	
	Import the corpus into SCT

	
	Result: a structured database of linguistic objects (words, phones, discourses).

	
	Enrich the database

	
	Result: Further linguistic objects (utterances, syllables), and information about objects (e.g. speech rate, word frequencies).

	
	Query the database

	
	Result: A set of linguistic objects of interest (e.g. utterance-final words ending with a stop),

	
	Export the results

	
	Result: A CSV file containing information about the set of objects of interest

Ideally, the import and enrichment steps are only performed once for a given corpus. The typical use case of SCT is performing a query and export corresponding to some linguistic question(s) of interest.

This document is structured as follows:

	Installation [http://sct.readthedocs.io/en/latest/tutorial/installation.html]: Install necessary software

	Librispeech database [http://sct.readthedocs.io/en/latest/tutorial/buckeye.html]: Obtain a database for the Librispeech Corpus where the import and enrichment steps have been completed , either by using premade [http://sct.readthedocs.io/en/latest/tutorial/premade.html] or doing the import and enrichment steps yourself [http://sct.readthedocs.io/en/latest/tutorial/buildown.html].

	Examples [http://sct.readthedocs.io/en/latest/tutorial/vignetteMain.html]: Two worked examples illustrating the Query and Export steps, including creating “Query profiles” and “Export profiles”.

	Next steps [http://sct.readthedocs.io/en/latest/tutorial/nextsteps.html] : Next steps with SCT after the tutorial: pointers to different places in the documentation and presentations where SCT is described. Intended to kickstart carrying out your own analyses, or applying SCT to your own corpus.

Next [http://sct.readthedocs.io/en/latest/tutorial/installation.html]

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Navigation Tour

This is a tour to get you familiarized with the SCT layout and its functions. This is the entire window

[image: Image cannot be displayed in your browser]

The numbers of the panels surrounded by red rectangles correspond to:

Queries (1)

In the upper left corner, you will find the query panel

[image: Image cannot be displayed in your browser]
You will begin by selecting a target type in the dropdown menu next to “Lingustic objects to find”.
You can add filters by pressing the long “+” bar at the bottom of the panel.
If you want to used a saved query, you can do so by selecting it from the dropdown menu on the top right of the panel.

Additionally, you can use premade templates that can be selected by checking them. Both simple queries and complex queries have been incorporated. Checking these boxes will add a fixed set of filters which correspond to that query:

Complex queries generally consist of more filters and can be checked and run just like simple queries.

[image: Image cannot be displayed in your browser]
Running, exporting, and saving a query are all done using the respective buttons along the bottom of the panel. *

* NB Running, exporting, and saving a query are all different functions. Running a query simply executes the query on the database and returns a default set of results to an in-app tab. Exporting a query runs the query on the database but allows the user to choose what information is returned, in the form of a file written to the computer. Saving a query allows the user to save a query profile and re-use it later.

For more information see the following pages:

Building Queries [http://sct.readthedocs.io/en/latest/additional/buildingqueries.html]

Exporting Queries [http://sct.readthedocs.io/en/latest/additional/exporting.html]

Discourse (2)

The discourse panel shows the waveform and spectrogram views of the audio for a given file (if there is audio) as well as the alignment of words, phones, and utterances (if they have been encoded) overlaid onto the waveform. For more information on viewing discourses, see Viewing discourses [http://sct.readthedocs.io/en/latest/additional/viewingdiscourses.html]

[image: Image cannot be displayed in your browser]

Connection (3)

This panel is used to establish connections with existing databases, or to construct a new database by ‘importing’ a corpus from the hard drive. Connect to a Neo4j server by filling in the host and port information and pressing “Connect”. Import a database from the hard drive by pressing “Import Local Corpus”. If a database has already been used in SCT it does not need to be imported again. Select a corpus by clicking on it (it will then be highlighed in blue or grey). For more information, see Connecting to servers [http://sct.readthedocs.io/en/latest/additional/connecting.html]

[image: Image cannot be displayed in your browser]

Details/Acoustics/Help (4)

This panel will give you details about your file, as well as precise acoustic information and help for a selected feature in the program

[image: Image cannot be displayed in your browser]
[image: Image cannot be displayed in your browser]
[image: Image cannot be displayed in your browser]
[image: Image cannot be displayed in your browser]

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Connection

To see an example connection, go to Connection example [http://sct.readthedocs.io/en/latest/additional/exconnecting.html]

	In the connection tab, there are various features.

	
[image: Image cannot be displayed in your browser]

These are detailed below

IP address (or localhost)

This is the address of the Neo4j server. In most cases, it will be ‘localhost’

Port

	This is the port through which a connection to the Neo4j server is made. By default, it is 7474. It must always match the port shown in the Neo4j window.

	[image: Image cannot be displayed in your browser]

Username and Password

These are by default not required, but available should you need authentication for your Neo4j server

Connect

This button will actually connect the user to the specified server.

Find local audio files

Pressing this allows the user to browse his/her file system for directories containing audiofiles that correspond to files in a corpus.

Corpora

The user select a corpus (for runnning queries, viewing discourses, enrichment, etc.) by clicking that corpus in the “Available corpora” menu. The selected corpus will be highlighted in blue or grey.

Import local corpus

This is strictly for constructing a new relational database in Neo4j that does not already exist. Any corpus that has already been imported can be accessed by pressing “Connect” and selecting it instead. Re-importing the same corpus will overwrite the previous corpus of the same name, as well as remove any enrichment the user has done on the corpus.

When importing a new corpus, the user selects the directory of the overall corpus, not specific files or subdirectories.

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Building Queries

In this panel, the user constructs queries by adding filters (these will be explained more thoroughly in a moment).
There are two key concepts that drive a query in SCT:

	Linguistic Object A linguistic object can be an utterance, word, or phone. By selecting a linguistic object, the user is specifying the set of elements over which the query is to be made. For example, selecting “phones” will cause the program to look for phones with properties specified by the user (if “words” were selected, then the program would look for words, etc.)

	Filters Filters are statements that limit the data returned to a specific set. Each filter added provides another constraint on the data. Click here [http://sct.readthedocs.io/en/latest/additional/filters.html] for more information on filters. Here’s an example of a filter:

[image: Image cannot be displayed in your browser]

This filter specifies all the object (utterance, phone, syllable) which are followed by an object of the same type that shares its rightmost boundary with a word.

Now you’re ready to start building queries. Here’s an overview of what each dropdown item signifies

Linguistic Objects

	Utterance: An utterance is (loosely) a group of sounds delimited by relatively long pauses on either side. This could be a clause, sentence, or phrase. Note that utterances need to be encoded before they are available.

	Syllables Syllables currently have to be encoded before this option is available. The encoding is done through maximum attested onset

	Word: A word is a collection of phones that form a single meaningful element.

	Phone: A phone is a single speech segment.

The following is avaiable only for the TIMIT database:

	surface_transcription This is the phonetic transcription of the utterance

Filters

	Filters are conditions that must be satisfied for data to pass through. For example

	[image: Image cannot be displayed in your browser]

is a filter

	Many filters have dropdown menus. These look like this:

	[image: Image cannot be displayed in your browser]

Generally speaking, the first dropdown menu is used to target a property. These properties are available without enrichment for all databases:

	alignment The position of the object in a super-object (i.e. a word in an utterance, a phone in a word...)

	following Specifies the object after the current object

	previous Specifies the object before the current object

	subset Used to delineate classes of phones and words. Certain classes come premade. Others are avaiable through enrichment

	duration How much time the object occupies

	begin The start of the object in time (seconds)

	end The end of the object in time (seconds)

	label The orthographic contents of an object

	word Specifies a word (only available for Utterance, Syllable, and Phone)

	syllable Specifies a syllable

	phone Specifies a phone

	speaker Specifies the speaker

	discourse Specifies the discourse, or file

	category Only available for words, specifies the word category

	transcription Only available for words, specifies the phonetic transcription of the word in the corpus

These are available after enrichment:

	utterance Available for all objects except utterance, specifies the utterance that the object came from

	syllable_position Only available for phones, specifies the phone’s position in a syllable

	num_phones Only available for words, specifies the number of phones in a word

	num_syllables Only available for words, specifies the number of syllables in a word

	position_in_utterance Only available for words, specifies the word’s index in the utterance

These are only available for force-aligned database:

	manner_of_articulation Only available for phones

	place_of_articulation Only available for phones

	voicing Only available for phones

	vowel_backness Only available for phones

	vowel_rounding Only available for phones

	vowel_height Only available for phones

	frequency Only available for words, specifies the word frequency in the corpus

	neighborhood_density Only available for words, specifies the number of phonological neighbours of a given word.

	stress_pattern Only available for words, specifies the stress pattern for a word

	The second filter will depend on which filter you chose in the first column. For example, if you chose phone you will get all of the phone options specified above. However if you choose label you will be presented with a different type of dropdown menu. This section covers some of these possibilities.

	
	
	alignment

	
	right aligned with This will filter for objects whose rightmost boundary lines up with the rightmost boundary of the object you will select in the third column of dropdown menus (utterance, syllable, word, or phone).

	left aligned with This will filter for objects whose leftmost boundary lines up with the left most boundary of the object you will select in the third column of dropdown menus (utterance, syllable, word, or phone).

	not right aligned with This will exclude objects whose rightmost boundary lines up with the rightmost boundary of the object you will select in the third column of dropdown menus (utterance, syllable, word, or phone).

	not left aligned with This will exclude objects whose leftmost boundary lines up with the left most boundary of the object you will select in the third column of dropdown menus (utterance, syllable, word, or phone).

	
	subset

	
	== This will filter for objects that are in the class that you select in the third dropdown menu.

	
	begin/end/num_phones/num_syllables/ position_in_utterance/frequency/ neighborhood_density/duration

	
	== This will filter for objects whose property is equal to what you have specified in the text box following this menu.

	!= This will exclude objects whose property is equal to what you have specified in the text box following this menu.

	>= This will filter for objects whose property is greater than or equal to what you have specified in the text box following this menu.

	<= This will filter for objects whose property is less than or equal to what you have specified in the text box following this menu.

	> This will filter for objects whose property is greater than what you have specified in the text box following this menu.

	< This will filter for objects whose property is less than what you have specified in the text box following this menu.

	
	stress_pattern/category/label/ speaker + name/discourse + name/ transcription/vowel_height/ vowel_backness/vowel_rounding/ manner_of_articulation/ place_of_articulation/voicing

	
	== This will filter for objects whose property is equivalent to what you have specified in the text box or dropdown menu following this menu.

	!= This will exclude objects whose property name is equivalent to what you have specified in the text box or dropdown menu following this menu.

	regex This option allows you to input a regular expression to match certain properties.

Experiment with combining these filters. Remember that each time you add a filter, you are applying further constraints on the data.

	Some complex queries come pre-made. These include “all vowels in mono-syllabic words” and “phones before word-final consonants”. Translating from English to filters can be complicated, so here we’ll cover which filters constitute these two queries.

	
	
	All vowels in mono-syllabic words

	
	Since we’re looking for vowels, we know that the linguistic object to search for must be “phones”

	
	To get mono-syllabic words, we have to go through three phases of enrichment

	
	First, we need to encode syllabic segments

	Second, we need to encode syllables

	Finally, we can encode the hierarchical property: count of syllables in word

	Now that we have this property, we can add a filter to look for monosyllabic words:

word: count_of_syllable_in_word == 1

	Notice that we had to select “word” for “count_of_syllable_in_word” to be available

	The next filter we want to add would be to get only the vowels from this word.

subset == syllabic

	This will get the syllabic segments (vowels) that we encoded earlier

	
	Phones before word-final consonants

	
	Once again, it is clear that we are looking for “phones” as our linguistic object.

	The word “before” should tip you off that we will need to use the “following” or “previous” property.

	We start by getting all phones that are in the penultimate position in a word.

following phone right-aligned with word

	This will ensure that the phone after the one we are looking for is the word-final phone

	Now we need to limit it to consonants

following phone subset != syllabic

	This will further limit the results to only phones before non-syllabic word-final segments (word-final consonants)

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Exporting Queries

While getting in-app results can be a quick way to visualize data, most often the user will want to further manipulate the data (i.e. in R, MatLab, etc.) To this end, there is the “Export query results” feature. It allows the user to specify the information that is exported by adding columns to the final output file. This is somewhat similar to building queries [http://sct.readthedocs.io/en/latest/additional/buildingqueries.html] , but not quite the same. Insttead of filters, pressing the “+” button will add a column to the exported file.

	For example, if the user wanted the timing information (begin/end) and lables for the object found and the object before it, the export profile would look like:

	[image: Image cannot be displayed in your browser]

	Perhaps a researcher would be interested in knowing whether word-initial segments in some word categories are longer than in others. To get related information (phone timing information and label, word category) into a .csv file, the export profile would be something like:

	[image: Image cannot be displayed in your browser]

Here, “phone” has been selected as the linguistic object to find (since that is what we’re interested in) so any property without a preceding dropdown menu is a property of the target phone – in this case, alignment would have been used to specify “word-initial phones”.

	Another option is to use the “simple export” window.

	[image: Image cannot be displayed in your browser]

	Here, there are several commong options that can be selected by checking them. Once checked, they will appear as columns in the query profile:

	[image: Image cannot be displayed in your browser]

While many of the column options are the same as ones available for building queries [http://sct.readthedocs.io/en/latest/additional/buildingqueries.html] there are some differences :

	“alignment” and “subset” are not valid column options

	
	column options do not change depending on the linguistic object that was chosen earlier

	
	instead, you can select “word” and then “label” (or some other option) or “phone” + options, etc.

	you can edit the column name by typing what you would like to call it in the “Output name:” box. These names are by default very descriptive, but perhaps too long for the user’s purposes.

Since the options are similar but not all identical, here is a full list of all the options available:

	following Specifies the object after the current object. There will be another dropdown menu to select a property of this following object.

	previous Specifies the object before the current object. There will be another dropdown menu to select a property of this preceding object.

	duration Adds how much time the object occupies as a column

	begin Adds the start of the object in time (seconds) as a column

	end Adds the end of the object in time (seconds) as a column

	label Adds the orthographic contents of an object as a column

	
	word Specifies a word (another dropdown menu will become available to specify another property to add as a column). The following are only available if “word” is selected either as the original object to search for, or as the first property in a column.

	
	category Adds the word category as a column

	transcription Adds the underlying phonetic transcription of the word in the corpus as a column

	surface_transcription Adds the surface transcription of the word in the corpus as a column

	utterance Specifies the utterance that the word came from (another dropdown menu will become available to specify another property to add as a column)

	phone Specifies a phone (another dropdown menu will become available to specify another property to add as a column)

	speaker Specifies the speaker (another dropdown menu will become available to specify another property to add as a column)

	discourse Specifies the discourse, or file (another dropdown menu will become available to specify another property to add as a column)

Once the profile is ready, pressing “run” will open the following window:

[image: Image cannot be displayed in your browser]

Here the user can pick a name and location for the final file. After pressing save, the query will run and the results will be written in the desired columns to the file.

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Viewing Discourses

After completing a query, it might be useful to take a closer look at the discourse, or file, that a result came from. To this end, SCT has the ‘Discourse’ window on the bottom left.

[image: Image cannot be displayed in your browser]

The user is presented with two windows inside of the ‘Discourse’ window. The top one shows the waveform of the file as well as the transcriptions of words and phones.

[image: Image cannot be displayed in your browser]

The bottom window is a spectrogram. This maps time and frequency on the X and Y axes respectively, while the darkeness of an area indicates the amplitude. Lines generated by the software also indicate pitch and formants when available.

[image: Image cannot be displayed in your browser]

Pitch and formants will only become available by first selecting “Analyze acoustics” in the enrichment menu. Viewing one of the discourses’ acoustic information can be done by clicking on a discourse either in the “Discourse” tab of the top right window (right next to “Connection”),

[image: Image cannot be displayed in your browser]

	or by double-clicking on a result from a query in the “Query #” tab*.

	[image: Image cannot be displayed in your browser]

* NB A successful query must first be run for this tab to appear

Now something like this should be displayed:

[image: Image cannot be displayed in your browser]

The waveform is displayed, with annotations

[image: Image cannot be displayed in your browser]

as well as the spectrogram, whose features can be toggled on and off by clicking on them.

	Spectrogram On

[image: Image cannot be displayed in your browser]

	Spectrogram Off (just formants and pitch)

[image: Image cannot be displayed in your browser]

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Viewing Results

Having run a query, a user will want to make sense of the results. These can be found in the “Query #” that will appear as soon as the query has finished running.

Within this tab, based on the linguistic objects the user was searching for (utterance, word, phone, or syllable) there will be different columns*.
Here is a list of the default columns

Utterance

	begin

	end

	discourse

	speaker

Word

	begin

	category * only in buckeye

	end

	label

	surface_transcription * only in buckeye

	transcription

	discourse

	speaker

Phone

	begin

	end

	label

	discourse

	speaker

Syllable

	begin

	end

	label

	discourse

	speaker

* NB Scrolling horizontally may be required to view all of these options.

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Example: Connecting to Servers

If you already have Neo4j open and started, you’re ready to start connecting to servers.

Go to the upper right panel in SCT

[image: Image cannot be displayed in your browser]
You’re not connected to the Neo4j graph database the first time you start the program. Let’s fix that. Make sure that the port is the same as in your Neo4j window.

[image: Image cannot be displayed in your browser]
If they match, you’re ready to proceed. Press connect. Because it is your first time using the program, nothing will appear in “Available Corpora”, but the “Reset Local Cache” button should now be clickable.

Next, go to “Import Local Corpus” at the bottom center and click on it.

[image: Image cannot be displayed in your browser]
Press “Buckeye Corpus”. This was included with the tutorial. Go to the tutorial folder and select “buckeyeDataForTutorial”. You will have to wait for the corpus to be imported.

When the process has completed, you are ready to make some queries. Simply select the corpus by clicking on it under “Available corpora” and begin adding filters.

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Enrichment

Databases can be enriched by encoding various elements. Usually, the database starts off with just words and phones, but by using enrichment options a diverse range of options will become available to the user. Here are some of the options:

	Encode non-speech elements this allows the user to specify for a given database what should not count as speech

	Encode utterances After encoding non-speech elements, we can use them to define utterances (segments of speech separated by a .15-.5 second pause)

	Encode syllabic segments This allows the user to specify which segments in the corpus are counted as syllabic

	Encode syllables if the user has encoded syllabic segments, syllables can now be encoded using maximum attested onset

	Encode hierarchical properties These allow the user to encode such properties as number of syllables in each utterance, or rate of syllables per second

	Enrich lexicon This allows the user to assign certain properties to specific words. For example the user might want to encode word frequency. This can be done by having words in one column and corresponding frequencies in the other column of a column-delimited text file.

	Enrich phonological inventory Similar to lexical enrichment, this allows the user to add certain helpful features to phonological properties – for example, adding ‘fricative’ to ‘manner_of_articulation’ for some phones

	Encode subsets Similar to how syllabic phones were encoded into subsets, the user can encode other phones in the corpus into subsets as well

	Analyze acousticcs This will encode pitch and formants into the corpus. This is necessary to view the waveforms and spectrogram.

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Speech Corpus Tools 0.1.0 documentation

Filters Explained

So far, there has been a lot of talk about objects, filters, and alignment, but these can be a difficult-to-grasp concepts. These illustrated examples might be helpful in gleaning a better understanding of what is meant by “object”, “filter” and “alignment”.

The easiest way to start is with an example. Let’s say the user wanted to search for word-final fricatives in utterance-initial words

While to a person this seems like a fairly simple task that can be accomplished at a glance, for SCT it has to be broken up into its constituent steps. Let’s see how this works on this sample sentence:

[image: Image cannot be displayed in your browser]

Here, each level (utterance, word, phone) corresponds to an object. Since we are ultimately looking for fricatives, we would want to select “phones” as our linguistic object to find.

Right now we have all phones selected, since we haven’t added any filters. Let’s limit these phones by adding the first part of our desired query: word-final phones. To accomplish this, we need to grasp the idea of alignment.

Each object (utterances, words, phones) has two boundaries, left and right. These are represented by the walls of the boxes containing each object in the picture. To be “aligned”, two objects must share a boundary. For example, the non-opaque objects in the next 2 figures are all aligned. Shared boundaries are indicated by thick black lines. Parent objects (for example, words in which a target phone is found) are outlined in dashed lines. In the first picture, the words and phones are “left aligned” with the utterance (their left boundaries are the same as that of the utterance) and in the second image, words and phones are “right aligned” with the utterance.

[image: Image cannot be displayed in your browser]
[image: Image cannot be displayed in your browser]

Now that we understand alignment, we can use it to filter for word-final phones, by adding in this filter:

[image: Image cannot be displayed in your browser]

By specifying that we only want phones which share a right boundary with a word, we are getting all word-final phones.

[image: Image cannot be displayed in your browser]

However, recall that our query asked for word-final fricatives, and not all phones. This can easily be remedied by adding another filter *:

[image: Image cannot be displayed in your browser]

* NB the “fricative” property is only availably through enrichment [http://sct.readthedocs.io/en/latest/additional/enrichment.html]

Now the following phones are found:

[image: Image cannot be displayed in your browser]

Finally, in our query we wanted to specify only utterance-intial words. This will again be done with alignment. Since English reads left to right, the first word in an utterance will be the leftmost word, or the word which shares its leftmost boundary with the utterance. To get this, we add the filter:

[image: ../_images/finalfilter.png]

This gives us the result we are looking for: word-final fricatives in utterance-initial words

[image: Image cannot be displayed in your browser]

Another thing we can do is specify previous and following words/phones and their properties. For example: what if we wanted the final segment of the second word in an utterance?

[image: Image cannot be displayed in your browser]

This is where the “following” and “previous” options come into play. We can use “previous” to specify the object before the one we are looking for. If we wanted the last phone of the second word in our sample utterance (the “s” in “reasons”) we would want to specify something about the previous word’s alignment. If we wanted to get the final phone of the words in this position, our filters would be:

[image: Image cannot be displayed in your browser]

For a full list of filters and their uses, see the section on building queries [http://sct.readthedocs.io/en/latest/additional/buildingqueries.html]

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Speech Corpus Tools 0.1.0 documentation

Index

 Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

 _images/bottomformants.png
. Spectrogram

03
354

Formants

o 01 2 03 o0s 06

Pitch
| _help |

_images/complexquery.png
Query profiles New query
Linguistic objects to find utterance
Fiters
.
Basic Filers

Simple queries IS

all vowels in monosyllabic words

phones before a word-final consonant

Run query Export auery resiltsy Save query profile

_images/connection.png
Available corpora

1P address (or localhost) [localhost

buckeye
Port (7474 globalphone
. sotc
Username (optional) e

Password (optional)

Connect
Find local audio files
Reset local cache.

Import local corpus. |

_images/bottomfull.png
Spectrogram

3 7 ™ R
3753 % i
23 Formants
0 T T T T T T T
o o 03 o4 05 05 o7 08 09
Pitch

| _help |

_images/fullsentence.png
Utterance

tutorial/premade.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Premade database

Make sure you have opened the SCT application and started Neo4j, at least once. This creates folders for Neo4j databases and for all SCT’s local files (including SQL databases):

		OS X: /Users/username/Documents/Neo4j, /Users/username/Documents/SCT

		Windows: C:\Users\username\Documents\Neo4j, C:\Users\username\Documents\SCT

Unzip the buckeyeDatabases.zip file. It contains two folders, buckeye.graphdb and buckeye. Move these (using Finder on OS X, or File Explorer on Windows) to the Neo4j and SCT folders. After doing so, these directories should exist:

		/Users/username/Documents/Neo4j/buckeye.graphdb

		/Users/username/Documents/SCT/buckeye

Some important information about the database (to replicate if you are building your own):

		Utterances have been defined as speech chunks separated by non-speech (pauses, disfluencies, other person talking) chunks of at least 150 msec.

		Syllabification has been performed using maximal onset.

Previous [http://sct.readthedocs.io/en/latest/tutorial/buckeye.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/exprofile2.png
bjects to find phone

[label 4| Output name: [label X
begin 4| Output name: |begin X
end 4| Output name: lend X
duration 4| Output name: |duration X
word 4] [category +| Output name: word_category X

(Run) (Save as...) (Cancel

tutorial/example1.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Example 1

Motivation

A number of factors affect the duration of vowels, including:

		Following consonant voicing (voiced > voiceless)

		Speech rate

		Word frequency

		Neighborhood density

#1 is said to be particularly strong in varieties of English, compared
to other languages (e.g. Chen, 1970). Here we are interested in
examining whether these factors all affect vowel duration, and in
particular in seeing how large and reliable the effect of consonant
voicing is compared to other factors.

Step 1: Creating a query profile

Based on the motivation above, we want to make a query for:

		All vowels in CVC words (fixed syllable structure)

		Only words where the second C is a stop (to examine following C voicing)

		Only words at the end of utterances (fixed prosodic position)

To perform a query, you need a query profile. This consists of:

		The type of linguistic object being searched for (currently: phone, word, syllable, utterance)

		Filters which restrict the set of objects returned by the query

Once a query profile has been constructed, it can be saved (“Save query profile”). Thus, to carry out a query, you can either create a new one or select an existing one (under “Query profiles”). We’ll assume here that a new profile is being created:

		Make a new profile: Under “Query profiles”, select “New Query”.

		Find phones: Select “phone” under “Linguistic objects to find”. The screen should now look like:

[image: Image cannot be displayed in your browser]

		Add filters to the query. A single filter is added by pressing “+” and constructing it, by making selections from drop-down menus which appear. For more information on filters, see this page [http://sct.readthedocs.io/en/latest/additional/filters.html] .

The first three filters are:

[image: Image cannot be displayed in your browser]

These do the following:

		
		Restrict to utterance-final words:

		
		word: the word containing the phone

		alignment: something about the word’s alignment with respect to a higher unit

		Right aligned with, utterance: the word should be right-aligned with its containing utterance

		
		Restrict to syllabic phones (vowels and syllabic consonants):

		
		subset: refer to a “phone subset”, which has been previously defined. Those available in this example include syllabics and consonants.

		==, syllabic: this phone should be a syllabic.

		
		Restrict to phones followed by a stop

		
		following: refer to the following phone

		manner_of_articulation: refer to a property of phones, which has been previously defined. Those available here include “manner_of_articulation” and “place_of_articulation”

		==, stop: the following phone should be a stop.

Then, add three more filters:

[image: Image cannot be displayed in your browser]

These do the following:

		Restrict to phones preceded by a consonant

		
		Restrict to phones which are the second phone in a word

		
		previous: refer to the preceding phone

		alignment, left aligned with, word: the preceding phone should be left-aligned with (= begin at the same time as) the word containing the target phone. (So in this case, this ensures both that V is preceded by a word-initial C in the same word: #CV.)

		Restrict to phones which precede a word-final phone

These filters together form a query corresponding to the desired set of linguistic objects (vowels in utterance-final CVC words, where C2 is a stop).

You should now:

		Save the query : Selecting Save query profile, and entering a name, such as “Buckeye CVC”.

		Run the query : Select “Run query”.

This will take a while (probably several minutes).

Step 2: Creating an export profile

The next step is to export information about each vowel token as a CSV file. We would like the vowel’s duration and identity, as well as the following factors which are expected to affect the vowel’s duration:

		Voicing of the following consonant

		The word’s frequency and neighborhood density

		The utterance’s speech rate

In addition, we want some identifying information (to debug, and potentially for building statistical models):

		What speaker and file each token is from

		The time where the token occurs in the file

		The orthography of the word.

		The identity of the preceding and following consonants.

Each of these 12 variables we would like to export corresponds to one row in an export profile.

To create a new export profile:

		Select “New export profile” from the “Export query results” menu.

		Add one row per variable to be exported, as follows:

		Press “+” (create a new row)

		Make selections from drop-down menus to describe the variable.

		Put the name of the variable in the Output name field. (This will be the name of the corresponding column in the exported CSV. You can use whatever name makes sense to you.)

The twelve rows to be added for the variables above result in the following export profile:

[image: Image cannot be displayed in your browser]

Some explanation of these rows, for a single token: (We use the [u] in /but/ as a running example)

		Rows 1, 2, 9 are the duration, label, and the beginning time (time) of the phone object (the [u]), in the containing file.

		Row 8 refers to the name of this file` (called a “discourse” in SCT).

		
		Rows 3 and 12 refer to the following phone object (the [t]): its label, and its voicing (whether it is voiced or voiceless).

		
		Note that “following” automatically means “following phone”” (i.e., phone doesn’t need to put put after following) because the linguistic objects being found are phones. If the linguistic objects being found were syllabes (as in Example 2 below), “following” would automatically mean “following syllable”.

		Row 11 refers, analogously, to the label of the preceding phone object (the [b]).

		Rows 4, 5, and 10 refer to properties of the word which contains the phone object: its label (= orthography, here “boot”), neighborhood_density, and frequency.

		Row 6 refers to the utterance which contains the phone: its speech_rate, defined as syll`ables per second over the utterance.

		Row 7 refers to the speaker (their name) whose speech contains this phone.

Each case can be thought of as a property (shown in teletype) of a linguistic object or organizational unit (shown in italics).

You can now:

		Save the export profile : Select “Save as...”, then enter a name, such as “Buckeye CVC export”.

		Perform the export : Select “Run”. You will be prompted to enter a filename to export to; make sure it ends in .csv (e.g. buckeyeCvc.csv).

This will take a while (probably several minutes).

Step 3: Examine the data file; basic analysis

		Here are the first few rows of the resulting data file, in Excel:

		
[image: Image cannot be displayed in your browser]

For example, row 2 TODO. (comes at the end of the utterance “not ever been taught”)

TODO: R code to load data and see the basic results (big speech rate and frequency effects; small stop voicing effect; no neighborhood density effect).

Next [http://sct.readthedocs.io/en/latest/tutorial/example2.html] Previous [http://sct.readthedocs.io/en/latest/tutorial/vignetteMain.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/discoursetab.png
Connection Collay
pse

50101a
50101b
501022
50102b
501032
50201a
50201b
502022
50202b
502032
502030
502042
50204b
502052
50205b
502062
50301a
50301b
03022
50302b
503032
50303b

_images/details.png
[T Acoustics

Help |

Collapse

Please select an annotation

_images/ex5.png
Utterance | The. reasons for this dive seemed foolish now.

reasons for | this dive

g
g
H

Phone [DH |1y Z|R| Iv |Z|AX]

tutorial/example2.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Example 2

Step 1: Query profile

In this case, we want to make a query for:

		Word-initial syllables

		...which are also primary-stressed

		...only in words at the end of utterances (fixed prosodic position)

For this query profile:

		“Linguistic objects to find” = “syllables”

		
		Filters are needed to restrict to:

		
		Word-initial syllables

		Utterance-final words

		Primary-stressed syllables

This corresponds to the following query profile, which has been saved (in this screenshot) as “PSS: first syllable” in SCT:

[image: Image cannot be displayed in your browser]

The first and second filters are similar to those in Example 1:

		
		Restrict to word-initial syllables

		
		alignment: something about the syllable’s alignment

		left aligned with word: what it sas

		
		Restrict to utterance-final words

		
		word: word containing the syllable

		right aligned with utterance``: the word and utterance have the same ending.

The third filter involves a regular expression:

		
		Restrict to initial-stressed words

		
		word: word containing the syllable

		stress pattern: a pattern such as #1002#, #1020#, #1# describing the canonical stress pattern (1, 2, 0 = primary, secondary, none).

		regexp: a regular expression describing the desired stress pattern. (Here: the string “#1” followed by any other characters.)

You should input this query profile, then run it (optionally saving first). This will take a minute or two.

Step 2: Export profile

This query has found all word-initial stressed syllables for words in utterance-final position. We now want to export information about these linguistic objects to a CSV file, for which we again need to construct a query profile. (You should now Start a new export profile.)

We want it to contain everything we need to examine how syllable duration (in seconds) depends on word length (which could be defined in several ways):

		The duration of the syllable

		Various word duration measures: the number of syllables and number of phones in the word containing the syllable, as well as the duration (in seconds) of the word.

We also export other information which may be useful (as in Example 1): the syllable label, the speaker name, the file name, the time the token occurs in the file, and the word label (its orthography).

The following export profile contains these seven variables:

TODO

After you enter these rows in the export profile, run the export (optionally saving the export profile first). I exported it as polysyllabic.csv.

Step 3: examine the data

In R: load in the data:

Exclude a few outliers (must be errors): syllables with durations > 1.5 sec; points from words with duration > 5 sec. We also exclude points from words with 5 syllables (there are only 2 such points):

Plot of the duration of the initial stressed syllable as a function of word duration (in syllables):

[image: Image cannot be displayed in your browser]

Here we see a clear polysyllabic shortening effect from 1 to 2 syllables, and possibly one from 2 to 3 syllables. Nothing is clear between 3 and 4 syllables.

		This plot suggests that the effect is pretty robust across speakers:

		[image: Image cannot be displayed in your browser]

Exercise: Try to make a plot like the penultimate one, using word duration on the x axis instead of number of syllables. (You’ll need to use geom_smooth() instead of geom_boxplot(), if you are using ggplot.) What issues do you run into? After these are resolved, do you see the expected pattern?

Initial syllable duration

Exercise: Try to instead export a CSV like the one just exported, but for all utterance-final words (not just restricting to those with initial stress). I saved this as polysyllabic2.csv.

The plot of initial syllable duration as a function of word length (in number of syllables) should now look like:

[image: Image cannot be displayed in your browser]

This plot is quite similar for 1-4 sylalbles to the plot where only initial-stressed words are considered (NB: initial-stressed words make up about 82% of tokens). For 4-5 syllables, there is no clear change So at least at this coarse level, it looks like polysyllabic shortening effects for English initial syllables are restricted to relatively short words.

Vignette [http://sct.readthedocs.io/en/latest/tutorial/vignetteMain.html]

Next [http://sct.readthedocs.io/en/latest/tutorial/tutorial2.html] Previous [http://sct.readthedocs.io/en/latest/tutorial/vignetteMain.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/ex2Fig1.png
Query profiles | PSS: first syllable -

form
Linguistic objects to find | syllable n
Filters

alignment B Left aligned with B word

word alignment Right aligned with utterance
word stress_pattern regex AR
+

Run query Export query resultsy Save query profile

_images/topempty.png
utterance

word

phone

05 06 B [09 1

_images/ex2Fig3.png
Duration of initial syllable (stressed)

O

O

.0
0.5

o

.O

s01 s02 s03 s04 s05 s06 s07

G X %%"I'— T '1;'%--1-4 '%'rm? Pt

s08 s09 s10 s11 s12 s13 s14

Stw P Fhe— oo Tien %4'** Tr=-

s15 s16 s17 s18 s19 s21

Cdte. %‘4-*-— %‘4'#" $ie_ Tirs %*¢" Tt

s22 s25 s26 s27 s28

'%'I'-#"' %‘-%--T-- %'-%:b- ?-n-*s %‘%#-ﬂ- %$$¢ %+=_

s29 s30 s31 s3. s33 s34 s3!

%"I'# %‘Ti-"' %"'E— ‘#‘%‘=" %*é Tt %%‘é*

s36 s37 s3 s39 s4i

- %*E" %"I'# %*—— %‘%;-- %.#1._

1234 1234 1234 1 4 123 4
Number of syllables in word

tutorial/installation.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Installation Setup

This document assumes the following:

		Neo4j is installed

		Speech Corpus Tools is installed

		You have a database for the Librispeech Test Corpus on your local machine.

Installing Neo4j

SCT currently requires that Neo4j version 3.0 be installed locally and running. To install Neo4j, please use the following links.

Mac version: Mac [http://info.neotechnology.com/download-thanks.html?edition=community&release=2.3.3&flavour=dmg]

Windows version: Windows [http://info.neotechnology.com/download-thanks.html?edition=community&release=2.3.3&flavour=winstall64]

Once downloaded, just run the installer and it’ll install the database software that SCT uses locally.

To ease initial set up, it’s helpful to turn off authentication for Neo4j. If you run the server software, it’ll pop up a window with a button that says “Options...” down in the lower left. Click on that and hit the button “Edit...” for “Server configuration”. That will pop open a text editor, and you just have to change the line near the top that says:

dbms.security.auth_enabled=true

to:

dbms.security.auth_enabled=false

and save the file. Neo4j should be ready to use.

If security is enabled, you’ll first have to click on the link in the Neo4j server (when it’s running) that says localhost:7474 which will take you to a browser page where you can set a password for the neo4j user. If you leave it enabled, remember your password for when you connect via Speech Corpus Tools.

Next [http://sct.readthedocs.io/en/latest/tutorial/installation2.html] Previous [http://sct.readthedocs.io/en/latest/tutorial/tutorial.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/saveas.png
P — [

Tags:

Where: | (] speechcorpustools

tutorial/installation2.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Installation Guide

At this point you should be set up to install SCT. If not, go back to [link to installation setup].

Downloading SCT itself can be done through the following links on Dropbox:

Mac: https://www.dropbox.com/s/hw3amns1y8qupb4/sct_alpha.dmg?dl=0

Windows: https://www.dropbox.com/s/ew5dfffsnqdo9qh/sct_alpha.zip?dl=0

Once those are downloaded, just extract the archive and the executable inside can be run.

One possible issue that might arise with Windows computers is related to graphics drivers. On the Windows version, a console output will pop up in addition to the main SCT window. If you notice a string of output containing something like “RuntimeError: OpenGL got errors” then your graphics driver is probably a couple of years old. In which case, please email Michael (michael.e.mcauliffe@gmail.com) to walk you through the process to update it. Macs tend to be better about keeping the graphics drivers up to date, and shouldn’t have this issue. SCT should run on Windows 7+ and Mac OSX 10.9+.

Next [http://sct.readthedocs.io/en/latest/tutorial/buckeye.html] Previous [http://sct.readthedocs.io/en/latest/tutorial/installation.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/detailsfull.png
[CEET Acoustics | Help | Collapse

Label s
Begin 2.748
End 2.967

Id 4f45f2a8-2cc3-11e6-b9fa-10ddb1c62041

_images/ex1Fig3.png
previous n subset n == n consonants B

previous B alignment a Left aligned with a word B

following a alignment B Right aligned with a word a

queries.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Query API

Queries are a primary function of Speech Corpus Tools. In general, the API provided
should cover all the usual questions that a phonetician might have about
a corpus.

Note

See the scripts in the examples directory of the repository
for some example queries in the Buckeye corpus and other data sources.

Basic queries

Please refer to the PolyglotDB documentation on querying (http://polyglotdb.readthedocs.org/en/latest/graph_queries.html)
for details on the basics of the query API.

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/discourse.png
085

s

Collapse

utterance
word
surface_transcription

Spectrogram
Formants,

Pitch

apireference.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

API Reference

Corpus class

		CorpusContext
		

Graph classes

Queries

		GraphQuery
		

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/discourseempty.png
Collapse

word

phone

Spectrogram

Formants

Pitch

tutorial/enrichment.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Enriching databases

SCT supports an array of enrichments on what is imported. Typically a corpus starts off with just words and phones, but higher level information about utterances and intermediate information about syllables is useful for corpus research. In this section, there will be a pipeline that you should follow for enriching your corpus.

Non-speech elements

The first aspect of enrichment to run is encoding whether some annotations are not speech. These can be things like silence, coughs, laughter, etc. To encode non-speech elements:

		Go to the “Enhance corpus” menu

		Select the “Encode non-speech elements...” option

		Replace the default regular expression if needed

		The default is the regular expression for the Buckeye corpus

		It matches all annotations for silence, the interviewer, laughter and other such elements

		For FAVE, set it to ^sp$

		For TIMIT and other force-aligned TextGrids, set it to ^<SIL>$

		Press Encode and wait for it to finish

Utterances

The primary function of encoding non-speech elements is to use them as the boundaries of utterances. In general, we define pauses between utterances to be a non-speech element (usually silence) of greater than some duration, usually 0.15 or 0.5 seconds.

To encode utterances:

		Go to the “Enhance corpus” menu

		Select the “Encode utterances...” option

		Replace the default values if needed

		The default is set to 0 (every non speech element is a pause between utterances), change to 0.15 to encode pauses as 150 ms

		Press Encode and wait for it to finish

Syllables

Syllables are encoded in two steps. First, the set of syllabic segments in the phonological inventory have to be specified.

To specify segments as syllablic:

		Go to the “Enhance corpus” menu

		Select the “Encode syllabic segments...” option

		Change the default values as necessary

		By default it selects segments that contain the characters i e a o u, which covers a number of machine readable/non-ipa alphabets

		Press Encode and wait for it to finish

Once syllabic segments have been encoded as such, you can encode the syllables themselves. In addition, queries will allow you to filter based on phones subset being syllabic.

To do so:

		Go to the “Enhance corpus” menu

		Select the “Encode syllables...” option

		Select the desired algorithm

		At the moment only a “maximum attested onset” algorithm is implemented

		This algorithm finds all the onsets at the beginnings of words

		Any consonantal string between two vowels is split up in such a way that as many segments are put into the onset as possible given the attested onsets at the beginnings of words

		Other algorithms will be implemented in the future

		Press Encode and wait for it to finish

Hierarchical properties

Useful information is available once the hierarchy has been fleshed out beyond words and phones. For instance, once utterances and syllables are encoded, you can count all of the syllables in each utterance, or get the rate of them per second (a common definition of speech rate). These properties are useful to cache before queries because their calculation is time intensive, but the results do not change. An utterance, once encoded, will always have the same number of syllables in it.

To encode a hierarchical property:

		Go to the “Enhance corpus” menu

		Select the “Encode hierarchical properties...” option

		Select the higher annotation

		For speech rate, this would be utterance

		For number of syllables in a word, this would be word

		For a word’s position in its utterance, this would be utterance

		Select the lower annotation

		For both speech rate and word, this would be syllable

		For a word’s position in its utterance, this would be word

		Select the type of property

		For speech rate, this would be rate

		For number of syllables in a word, this would be count

		For a word’s position in its utterance, this would be position

		Enter a name for the property

		The default is intended to be descriptive, but overly so

		Press Encode and wait for it to finish

Enriching the lexicon

Often we would like to query based on properties of words gathered from outside the corpus itself. For instance, part of speech is often not encoded in corpora when they’re imported, but could be a criteria to search for or to exclude. Likewise, if a particular set of words is needed, they can be encoded with a property offline to facilitate queries later.

The format of files for enriching the lexicon requires a named column-delimited text file (CSV, tab-delimited text file, etc) with headers. The first column should be the orthography of the word, the name of the column is not used. Subsequent columns correspond to properties to be encoded, where the sanitized name of the column with used as the name of the property in the database. For instance, a column named “Frequency” with a column of numerical values will become a numeric property named “Frequency” that can be filtered on.

The words specified in the text file does not have to be exhaustive, it will set properties for each word that is found, and leave the other ones alone. If you have a specific set of words you’d like to search for, you can create a text file with the first column having the orthography, and the second column a property named “Desired” with every word having a corresponding “True” value in that column. Then you can do a search for every word that has a value of True for its Desired property.

To enrich the lexicon:

		Go to the “Enhance corpus” menu

		Select the “Encode lexicon...” option

		If you would like to ensure case-sensitivity, press the corresponding check box.

		Press “Encode” and select a text file on your computer and wait for it to finish

Enriching the phonological inventory

Similar to lexicons, it is often useful to enrich the phonological inventories of corpora. These can be features such as + for a feature anterior or a value of fricative for a property such as manner_of_articulation.

The format of files that are used for inventory enrichment mirrors that for lexicon enrichment. They should be column-delimited text files with headers where the first column corresponds to the segment label and subsequent columns are properties to be encoded on the segments.

		Go to the “Enhance corpus” menu

		Select the “Encode phonological inventory...” option

		Press “Encode” and select a text file on your computer and wait for it to finish

Encode phone subsets/classes

You can encode some arbitrary subset of phones as a particular label, similar to how syllabic segments were encoded with the subset label of syllabic.

		Go to the “Enhance corpus” menu

		Select the “Encode phone subsets (classes)...” option

		Enter in a label for the subset/class

		Select the phones to be classified

		Press Encode and wait for it to finish

Analyze acoustics

Acoustics (pitch and formants) can be encoded to enrich the corpus. At the moment, such encoding is only relevant for when inspecting the waveform/spectrogram, as their is currently no way to query acoustics. The encoding for acoustics will also take a while depending on the size of the sound files/corpus, so I do not recommend using this option in the current state of SCT.

Next [http://sct.readthedocs.io/en/latest/tutorial/vignetteMain.html] Previous [http://sct.readthedocs.io/en/latest/tutorial/buckeye.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

importing.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Importing corpora

Importing is handled through PolyglotDB. Please refer to its documentation
for how to import corpora (http://polyglotdb.readthedocs.org/en/latest/importing.html).

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/simpleexport.png
e o Export profile

Linguistic objects to find word

phone. begin end label
word " begin " category. Tlend
discourse
speaker

Columns

Run Savess... Cancel

tutorial/tutorial2.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Tutorial

BELOW IS WHAT I STARTED WRITING BEFORE THINKING WE SHOULD JUST SHOW A COUPLE SCHEMATIC FIGURES, AND LEAVE A BLANK SPACE FOR STUFF THAT COMES UP FROM PARTICIPANTS

Eventually, SCT will have documentation. Until then, this section shows some illustrations of the types of information you can include in queries and exports.

For understanding these, it is important to understand the structure of objects in the SCT database, schematized in this example:

TODO (big schematic: “I like chocolate... really I do.”)

Linguistics objects are in an annotation graph (Bird & Liberman, 2001), reflecting their sequential order in time. Graphs are formal objects consisting of nodes and edges.
Precedence in time is one kind of relationship between nodes; other relationships between nodes whcih are represented in SCT include hierarchical order (indicated by ??) and alignment (not shown). The linguistic objects (i.e. nodes) also have properties, indicated in italics..

This database structure (nodes, edges, properties) contains several kinds of information, all of which can be used in queries or exports:

		
		Temporal

		
		Ex: Begining, end, duration of an object

		
		Properties

		
		Ex: a word’s frequency; a phone’s major class; an utterance’s speech rate

		
		Hierarchical

		
		Ex: the containing word or utterance (for a phone)

		
		Positional:

		
		Ex: position of word in an utterance (1, 2, 3, ...)

Examples

To be filled in based on participant requests / own data.

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

tutorial/buildown.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Build your own database

Import

SCT currently supports the following corpus formats:

		Buckeye

		TIMIT

		
		Force-aligned TextGrids

		
		FAVE (multiple talkers okay)

		LaBB-CAT TextGrid export

		Prosodylab

To import one of those corpora, press the “Import local corpus” button below the “Available corpora” list. Once it has been pressed, select one of the three main options to import. From there, you will have to select where on the local computer the corpus files live and they will be imported into the local server.

At the moment, importing ignores any connections to remote servers, and requires that a local version of Neo4j is running. Sound files will be detected based on sharing a name with a text file or TextGrid. If the location of the sound files is changed, you can update where SCT thinks they are through the “Find local audio files” button.

Previous [http://sct.readthedocs.io/en/latest/tutorial/buckeye.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/ex6.png
Utterance

Word

Phone

The reasons for this dive foolish now.
for this dive foolish now
F|AOR |DH [IH Al uw N| AW

search.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/ex1Fig4.png
Export profile

Linguistic objects to find phone

Columns
ustin [Outputname: X
label B Output name: vowel X
following | voicing Output name: following_consonant_voicing X
word | frequency Output name: frequency X
word | neighborhood_density Output name: neighborhood_density X
utterance | speech_rate Output name: speech_rate T
speaker | name Output name: speaker X
discourse | name Output name: file X
bogin [ouputrame: ime X
word | label Output name: label X
previous ' label Output name: preceding_consonant X
following . label Output name: following_consonant X

Save as... Cancel

installation.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Installation Setup

This document assumes the following:

		Neo4j is installed

		Speech Corpus Tools is installed

		You have a database for the Buckeye Corpus on your local machine.

Installing Neo4j

SCT currently requires that Neo4j version 2.3.3 be installed locally and running. To install Neo4j, please use the following links.

Mac version: Mac [http://info.neotechnology.com/download-thanks.html?edition=community&release=2.3.3&flavour=dmg]

Windows version: Windows [http://info.neotechnology.com/download-thanks.html?edition=community&release=2.3.3&flavour=winstall64]

Once downloaded, just run the installer and it’ll install the database software that SCT uses locally.

To ease initial set up, it’s helpful to turn off authentication for Neo4j. If you run the server software, it’ll pop up a window with a button that says “Options...” down in the lower left. Click on that and hit the button “Edit...” for “Server configuration”. That will pop open a text editor, and you just have to change the line near the top that says:

dbms.security.auth_enabled=true

to:

dbms.security.auth_enabled=false

and save the file. Neo4j should be ready to use.

If security is enabled, you’ll first have to click on the link in the Neo4j server (when it’s running) that says localhost:7474 which will take you to a browser page where you can set a password for the neo4j user. If you leave it enabled, remember your password for when you connect via Speech Corpus Tools.

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/exprofile.png
uistic objects to find phone

[label | Output name: [label X
[begin %] Output name: [begin X
[label | Output name: [label X
[(previous ¢] [label | Output name: [previous_label X
[(previous +] [begin | Output name: [previous_begin X
[(previous +] [end | Output name: [previous_end X

tutorial/vignetteMain.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Vignettes

Several worked examples follow, which demonstrate the workflow of SCT
and how to construct queries and exports. You should be able to
complete each example by following the steps listed in bold. The
examples are designed to be completed in order.

Each example results in a CSV file containing data, which you should
then be able to use to visualize the results. Instructions for basic
visualization in R are given (but using another program, such as
Excel, should be possible).

Example 1: Factors affecting vowel duration

Example 1 : factors affecting vowel duration

Example 2: Polysyllabic shortening

Motivation: Polysyllabic shortening refers to the “same” rhymic unit (syllable or vowel) becoming shorter as the size of the containing domain (word or prosodic domain) increases. Two classic examples:

		English: stick, sticky, stickiness (Lehiste, 1972)

		French: pâte, pâté, pâtisserie (Grammont, 1914)

Polysyllabic shortening is often – but not always – defined as being restricted to accented syllables. (As in the English, but not the French example.) Using SCT, we can check whether a couple simple versions of polysyllabic shortening holds in the Buckeye corpus:

		Considering just utterance-final words with primary stress on the initial syllable, does the initial syllable duration decrease as word length increases?

		Considering all utterance-final words, does the initial syllable duration decrease as word length increases?

We show (1) here, and leave (2) as an exercise.

Example 2: http://sct.readthedocs.io/en/latest/tutorial/example2.html

Example 3: Menzerath’s Law

Motivation: Menzerath’s Law (Menzerath 1928, 1954) refers to the general finding that segments and syllables are shorter in longer words, both in terms of

		duration per unit

		number of units (i.e. segments per syllable)

(Menzerath’s Law is related to polysyllabic shortening, but not the same.)

For example, Menzerath’s Law predicts that for English:

		The average duration of syllables in a word (in seconds) should decrease as the number of syllables in the word increases.

		`` `` for segments in a word.

		The average number of phones per syllable in a word should decrease as the number of syllables in the word increases.

Exercise: Build a query profile and export profile to export a data file which lets you test Menzerath’s law for the Buckeye corpus. For example, for prediction (1), you could:

		Find all utterance-final words (to hold prosodic position somewhat constant)

		Export word duration (seconds), number of syllables, anything else necessary.

(This exercise should be possible using pieces covered in Examples 1 and 2, or minor extensions.)

Next [http://sct.readthedocs.io/en/latest/tutorial/example1.html] Previous [http://sct.readthedocs.io/en/latest/tutorial/enrichment.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/fullfull.png
Collapse

utterance
buit

word

surface_transcription

0 T T T T T T T T T
— s . Spectrogram
PE y
N I~)
e U
Formants
0 T T T T T T
o o 03 o4 05 05 o
Pitch

| _help |

_images/notconnected.png
— EEM o) | ol

Available corpora
1P address (or localhost) [localhost

Port (7474
Username (optional)
Password (optional)
. Commeet |
T

Reset local cache

Import local corpus. |

_images/ex4.png
Utterance | The: reasons for this dve seemed foolish

Word reasons for this dive seemed foolish

Phone |DH|I¥|Z|R| Iv |Z| A N|Z|F| AOR | DH[IH[§ D (Al Vs | 1v [M|D [F| uw

_images/ex1Fig5.png
J1 0 ® (= fx| word
| A B (9 D E F G H 1 K L

nvcvwel_durat vowel following_co frequency neighborhoo speech_rate speaker file time lword |preceding_consonant following_consonant

2 0.16 aw voiceless 3865.31 25 5.49225427 s02 s0205b 235.482125 out t t
3 0.181768 ao voiceless 43.84 33 3.97656372 s02 s0205a 169.347187 taught t tq

4 0.078762 ey voiced 1891.04 33 6.44085045 s02 s0203a 76.598625 take t g

5 0.053001 ih voiceless 18896.31 34 6.07287449 s02 s0206a 17.970045 it dx t

6 0.276246 aw voiceless 3865.31 25 5.17073776 s02 s0206a 124.139606 out dx tq

7 0.066465 ih voiceless 18896.31 34 5.89812332 s02 s0205a 253.52877 it dx t

8 0.151011 aw voiceless 3865.31 25 7.22394221 s02 s0205a 263.422986 out dx tq

9 0.081 ih voiceless 18896.31 34 7.26344327 s02 s0201b 256.429 it dx tq

10 0.079795 ih voiced 18896.31 34 6.34169985 s02 s0201b 220.828 it ng d
{11 0.137125 er voiceless 246.35 31 6.65956313 s02 50205b 75.505438 hurt hh tq

12 0.32 ae voiced 1675.92 41 6.28272251 s02 50204b 73.099 had hh d

13 0.129657 aw voiceless 3865.31 25 8.06451613 s02 s0205a 264.613655 out nx t

14 0.024928 ah voiceless 4417.47 43 6.25438784 s02 s0206a 167.492127 but b tq

15 0.16 ‘ae voiceless 2009.16 47 5.26315789 s02 s0206a 362.011375 back b k

_images/fricativefilter.png
Linguistic objects to find = phone 2]

alignment Right aligned with word X help

subset fricative X help

_images/ex2.png
Utterance

Phone

The reasons for this dive foolish
These : reasons for this dive foolish
Al uw [L|H

tutorial/buckeye.html

 Navigation

 		
 index

 		Speech Corpus Tools 0.1.0 documentation »

Speech Corpus Tools: Tutorial and examples

Buckeye database

To do the examples below, you will need a SCT database for the Buckeye corpus. Technically, this is a PolyglotDB database, which consists of two sub-databases: a Neo4j database (which contains the hierarchical representation of discourses), and a SQL database (which contains lexical and featural information, and cached acoustic measurements). Instructions are below for either using pre-made copies of these, or for making your own.

Use pre-made database

http://sct.readthedocs.io/en/latest/tutorial/premade.html#premade-database

Build your own database

http://sct.readthedocs.io/en/latest/tutorial/buildown.html#build-your-own-database

Next [http://sct.readthedocs.io/en/latest/tutorial/enrichment.html] Previous [http://sct.readthedocs.io/en/latest/tutorial/installation2.html]

 © Copyright 2015, Montreal Corpus Tools.
 Created using Sphinx 1.3.5.

_images/query.png
Collpse
Query profiles New query B

ic objects to find | utterance [

o

Fiters

Basic Fitters

ial words Utterance-final words
" penultimate syllables (| syllable-initial phones.
" syllable-final phones phones before a consonant

Run query Export auery resutsy Save query profile

_images/topfull.png
okay

_images/querynum.png
— (oNwam TR GOl

165.15 N 165.354 that dh.eh dh.aet 501032 501
2 164941 vep 165.15 mean m.iy.n m.iy.n 501032 s01
3 164.881 PRP 164.941 i ay ay 501032 s01
4 16426 NULL 164.881 <LAUGH> |7 ? 501032 s01
s 16623 R 166.67 very veeh.riy veeh.riy 501032 s01
5 166.056 vep 166.23 are ar ar 501032 s01
7 165679 R 166.056 just jhahst jhahst 501032 s01
8 165354 PRP 165.679 they dh.ey dh.ey 501032 s01

_images/ex1.png
Utterance | The. reasons for this dive seemed foolish now.

These. reasons for this dive seemed foolish

Phone [DH 1Y |Z|R|

Allv[s| v |mD|F| uw [L|m

_static/minus.png

_images/ex1Fig1.png
Collapse

~
~

Query profiles = New guery
Linguistic objects to find phone a
Filters
+
Basic Filters

Simple queries Complex queries |

| utterance-initial words | utterance-final words

| penultimate syllables | syllable-initial phones

_static/comment-close.png

_images/neo4j.png
Neodj is ready. Browse to_http://localhost:7474

_static/comment-bright.png

_images/finalfilter.png
Linguistic objects to find | phone B

alignment Right aligned with word X help

subset = fricative X help

word alignment Left aligned with B utterance X help

_images/dropdown.png
alignment
 following

4| [alignment

ight aligned with

[word

X

| [_help |

previous
subset
duration
begin
end

label
word
phone
speaker
discourse

_images/filter.png
following #| [alignment 3| | Right aligned with = | word = [X || help |

_images/fullscreen.png
8006 Speech Corpus Tools

Collapse 3 (S0 Discourses | Collapse

Available corpora
Query profiles | New query 1P address (or localhost) [localhost

buckeye

Linguistic objects to find | word Port (7474

Flters
Username (optional)

Password (optional)
Connect
Find local audio files

Reset local cache

Run query Export query resuls, Save query profile

Collapse

Import local corpuss

Spectrogram

% [CEET Acoustics | Help | Collapse

Formants Please select an annotation

Connected to localhost:7474 (buckeye)

_images/importcorpusoptions.png
Buckeye Corpus
™MIT

Force-aligned TextGrids

_static/down-pressed.png

_images/ex3.png
foolish

dive

this

for

reasons

Utterance I The

foolish

this

dive
Rl Iv |z|Ax[N|z|F|AOR|DH[IH[S D (Al VS| v [M|D[F| uw [L|H|sH [N| AW

|

The
DH|IY/

Word
Phone

_static/down.png

_static/plus.png

_images/help.png
Collapse

that the object came from

alignment: The position of the object in a super-object (i

utterance, a phone

aword...)

_static/ajax-loader.gif

_images/discoursebotempty.png
Spectrogram

Formants

Pitch

_images/ex2Fig4.png
Duration of initial syllable

1.0-

o
3
1

s

Number of syllables in word

-

_images/simpleexportfull.png
L] Export profile
phone @ begin lend label
word begin category end labe
8 discourse
4 speaker

Gotumns
phone B besn Output name: phone_begin x
catogory Qutput name: category x
discourse name [Output name: [discourse_name x
spoaker name [Output name: speaker_name x

Run

Saveas...

_static/up.png

_images/ex2Fig2.png
o
1

o
o
1
e
00

Duration of initial syllable (stressed)

1 2 3
Number of syllables in word

_static/up-pressed.png

_images/ex3filt1.png
Linguistic objects to find | phone
Fiters

>

alignment

ned with & | word X help

_images/ex2filt1.png
Linguistic objectsto find |_phone ™

Fiters

alignment Right aligned with word X help

previous word alignment Left aligned with utterance X help

_images/ex1Fig2.png
Linguistic objects to find phone a

Filters

word alignment Right aligned with

subset == syllabic

following manner_of_articulation =

_static/file.png

_static/comment.png

